|
|
|||||||||||||||||
|
|||||||||||||||||
|
|||||||||||||||||
| Fotografii | Monede | Timbre | Schite | Cautare |
Bôcher was awarded a Harvard Fellowship, a Harris Fellowship and a Parker Fellowship which allowed him to travel to Europe to undertake research. The leading university for mathematics was Göttingen and there he attended lectures by Klein , Schönflies , Schwarz , Schur and Voigt. He was particularly attracted by Klein 's course on Lamé functions which was given in session 1889-90. At Göttingen he also attended lecture courses by Klein on the potential function, on partial differential equations of mathematical physics and on non-euclidean geometry . He was awarded a doctorate in 1891 for his dissertation Über die Reihenentwicklungen der Potentialtheorie (Development of the Potential Function into Series) having been encouraged to study this topic by Klein who acted as supervisor. It was an outstanding piece of work which received a university prize from Göttingen. Osgood , writing in , describes Bôcher's doctoral thesis in these terms:
While Bôcher was in Göttingen he met Marie Niemann and they were married in July 1891 after Bôcher had submitted his doctoral thesis. The Bôchers had three children, Helen, Esther, and Frederick. He returned with his new wife to Harvard where he was appointed as an instructor. In 1892 he published five papers: On Bessel's functions of the second kind; On a nine-point conic; On some applications of Bessel's functions with pure imaginary index; Note on the nine-point conic; and Some propositions concerning the geometric representation of imaginaries. Given his impressive record it is not surprising that in 1894 he was promoted to assistant professor. In that year he published his first book which was an extended version of his thesis with the same title. Perhaps 'extended version' doesn't do it justice since this book was now four times the length of his doctoral thesis. He became a full professor of mathematics in 1904. Bôcher published around 100 papers on differential equations, series, and algebra. His text on algebra Introduction to higher algebra, published by Macmillan, New York in 1907, was particularly important. In a seventy page article in 1906, Introduction to the theory of Fourier's series published in the Annals of Mathematics, he gave the first satisfactory treatment of the Gibbs phenomenon (he wrote another paper On Gibbs' phenomenon in 1914). In his papers are said to:
Let us mention, in particular, The theory of linear dependence which he published in the Annals of Mathematics in 1900. This paper treats both the algebraic and functional notions in a unified fashion. Bôcher's books are singled out in for special mention:
When An introduction to the study of integral equations was reprinted in 1971 a reviewer wrote:
He also wrote elementary texts such as Trigonometry (written jointly with Gaylord) and Analytic geometry. His final book was Leçons sur les méthodes de Sturm dans la théorie des équations différentielles linéaires et leurs développements modernes (1917) which was a record of lectures he gave in Paris in 1913-14 when he was Harvard Exchange Professor at the University of Paris. Although he was only 46 years old when he spent the year in Paris there was already signs that his health, which had never been particularly strong, was failing. He died at his home in Cambridge, Massachusetts, after suffering a prolonged illness. As to his character Osgood writes (see also which reproduces ):
Later in the article Osgood writes:
Bôcher was honoured by the American Mathematical Society when he was chosen to give the first series of Colloquium lectures in 1896. He gave six lectures on Linear differential equations and their applications. He was a founder and the first editor-in-chief of the Transactions of the American Mathematical Society holding this post for five years in total during two spell, the first beginning in 1908 and the second in 1911. He was honoured with election to the National Academy of Sciences (United States) in 1909 and he served as president of the American Mathematical Society during 1909-1910 delivering his presidential address in Chicago on The published and unpublished works of Charles Sturm on algebraic and differential equations. In 1912 Bôcher was an invited speaker at the International Congress of Mathematicians held in Cambridge, England. He lectured there on Boundary problems in one dimension. Zund, in , gives this assessment:
Source:School of Mathematics and Statistics University of St Andrews, Scotland |