|
|
|||||||||||||||||
|
|||||||||||||||||
|
|||||||||||||||||
| Fotografii | Monede | Timbre | Schite | Cautare |
Hardy did not appear to have the passion for mathematics that many mathematicians experience when young. Hardy himself writes in :
Indeed he did win a scholarship to Winchester College in 1889, entering the College the following year. Winchester was the best school in England for mathematical training yet, despite admitting later in life that he had been well-educated there, Hardy disliked everything about the school other than the academic training he received. Like all public schools it was a rough place for a frail, shy boy like Hardy. It is significant that although he did have a passion for ball games in general and cricket in particular, he was never coached in sport at Winchester. Somehow he failed to take part fully in the non-academic activities. While at Winchester Hardy won an open scholarship to Trinity College, Cambridge, which he entered in 1896. At Cambridge Hardy was assigned to the most famous coach R R Webb. He quickly realised that the point of the training was simply to achieve the best possible marks in the examinations by learning all the tricks of the trade. He was shocked to discover that Webb was not interested in the subject of mathematics, only in the tricks of examinations. Briefly Hardy thought he might change topics and study history instead. However, he managed to change his coach to A E H Love . Hardy expresses his gratitude to Love in :
Hardy was placed as fourth wrangler in the Mathematical Tripos of 1898, a result which continued to annoy him for, despite feeling that the system was very silly, he still felt that he should have come out on top. Hardy was elected a fellow of Trinity in 1900 then, in 1901, he was awarded a Smith's prize jointly with J H Jeans 'with unspecified relative merit'. The next period of Hardy's career was up to 1911 when, as Burkill writes in , he:
This was a period of which Hardy wrote himself :
It is worth noting at this point that Hardy was a remarkably honest man, and in particular he was very honest about his own abilities, strengths and weaknesses. A major change in Hardy's work came about in 1911 when he began his collaboration with J E Littlewood which was to last 35 years. Then in early 1913 he received Ramanujan 's first letter from India which was to start his second major collaboration. By the time World War I started in 1914, Ramanujan was in Cambridge and this eased for Hardy what was to be a very difficult period. Littlewood left Cambridge for war service in the Royal Artillery. Hardy volunteered for war service but was rejected on medical grounds. However Hardy's views on the war left him at odds with most of his colleagues at Cambridge. He had great respect for Germany :
Deeply unhappy at Cambridge, Hardy took the opportunity to leave in 1919 when he was appointed as Savilian professor of geometry at Oxford. These were in many ways the years when he was happiest and also the years when he produced his best mathematics in the collaboration with Littlewood . This collaboration was achieved during a period when Littlewood was in Cambridge and Hardy was in Oxford, making joint research a quite difficult logistical exercise. As Hardy wrote in :
Despite his background and the positions he held, Hardy preferred the poor and disadvantaged to those he called the 'large bottomed' who included :
He had chosen not to live in the best rooms while at Cambridge, and Hilbert was so concerned that Hardy was not being properly treated that he wrote to the Master of the College pointing out that the best mathematician in England should have the best rooms. However, Hardy did not think that way. He held a trade union office for two years (1924-26) as President of the Association of Scientific Workers. At a time when it seemed difficult to do so, Hardy liked equally both the United States and Russia. He spent the academic year 1928-29 at Princeton in an exchange with Veblen , who spent the year in Oxford. Despite having been unhappy at Cambridge, Hardy returned to the Sadleirian chair there in 1931 when Hobson retired. Snow in says that Hardy returned to Cambridge for two reasons, firstly that he still considered Cambridge the centre of English mathematics and the Sadleirian chair the foremost mathematics chair in England, and secondly, that he could keep his rooms in College at Cambridge while this was not possible at Oxford. To the unmarried Hardy, this held an attraction as he began to look toward old age. Hardy's interests covered many topics of pure mathematics - Diophantine analysis , summation of divergent series, Fourier series , the Riemann zeta function , and the distribution of primes . His long collaboration with Littlewood produced mathematics of the highest quality. It was a collaboration in which Hardy acknowledged Littlewood 's greater technical mathematical skills, but at the same time Hardy brought great talents of mathematical insight and a great ability to write their work up in papers with great clarity. Even more remarkable was Hardy's collaboration with Ramanujan . Hardy instantly spotted Ramanujan 's genius from a manuscript sent to him by Ramanujan from India in 1913. Two other top class mathematicians had previously failed to spot the genius. Hardy brought Ramanujan to Cambridge and they wrote five remarkable papers together. It was not only with Littlewood and Ramanujan that Hardy collaborated. He was a natural collaborator who also wrote joint papers with Titchmarsh , Ingham , Edmund Landau , Pólya , E M Wright , W W Rogosinski and Marcel Riesz . Hardy was a pure mathematician who hoped his mathematics could never be applied. However in 1908, near the beginning of his career, he gave a law describing how the proportions of dominant and recessive genetic traits would be propagated in a large population. Hardy considered it unimportant but it has proved of major importance in blood group distribution. There was only one passion in Hardy's life other than mathematics and that was cricket. In fact for most of his life his day, at least during the cricket season, would consist of breakfast during which he read The Times studying the cricket scores with great interest. After breakfast he would work on his own mathematical researches from 9 o'clock till 1 o'clock. Then, after a light lunch, he would walk down to the university cricket ground to watch a game. In the late afternoon he would walk slowly back to his rooms in College. There he took dinner, which he followed with a glass of wine. When cricket was not in season, it was the Australian cricket scores he would read in The Times and he would play real tennis in the afternoons. Hardy was known for his eccentricities. He could not endure having his photograph taken and only five snapshots are known to exist. He also hated mirrors and his first action on entering any hotel room was to cover any mirror with a towel. He always played an amusing game of trying to fool God (which is also rather strange since he claimed all his life not be believe in God). For example, during a trip to Denmark he sent back a postcard claiming that he had proved the Riemann hypothesis . He reasoned that God would not allow the boat to sink on the return journey and give him the same fame that Fermat had achieved with his " last theorem ". Another example of his trying to fool God was when he went to cricket matches he would take what he called his "anti-God battery". This consisted of thick sweaters, an umbrella, mathematical papers to referee, student examination scripts etc. His theory was that God would think that he expected rain to come so that he could then get on with his work. Since Hardy thought that God would then have the sun shine all day to spite him, he would be able to enjoy the cricket in perfect sunshine. As World War I had been painful for Hardy, World War II was equally so. He had remained remarkably youthful in both mind and body until 1939 when, at the age of 62, he had a heart attack. His remarkable mental powers began to leave him and sports which he had loved to participate in up till then became impossible. He was filled with anger that Europe had again entered the lunacy of war. However, Hardy had one further gift to leave to the world, namely A mathematicians apology which has inspired many towards mathematics. Hardy's book A mathematicians apology was written in 1940. It is one of the most vivid descriptions of how a mathematician thinks and the pleasure of mathematics. But the book is more, as Snow writes in :
The following quotation from A mathematicians apology ( ) gives a clear idea of Hardy's thoughts on mathematics:
By the time the war ended in 1945 Hardy health was failing fast. He longed to be creative again, for that was all that really mattered to him in life, but he knew that his creativity was gone and that he became very depressed. By 1946 he could only get around by taking taxi rides, a few steps would make him short of breath. In early summer of 1947 he tried to take his own life by taking a large dose of barbiturates. He took so many, however, that he was sick and survived. Snow writes :
Hardy received many honours for his work. He was elected a Fellow of the Royal Society in 1910, he received the Royal Medal of the Society in 1920 and Sylvester Medal of the Society in 1940:
He also received the Copley Medal of the Royal Society in 1947:
Hardy learnt of the award only a few weeks before his death. He is described in as follows:
He was president of the London Mathematical Society from 1926 to 1928 and again from 1939 to 1941. He received the De Morgan Medal of the Society in 1929. Source:School of Mathematics and Statistics University of St Andrews, Scotland |