|
|
|||||||||||||||||
|
|||||||||||||||||
|
|||||||||||||||||
| Fotografii | Monede | Timbre | Schite | Cautare |
Robinson entered the University of California at Berkeley from where he graduated with a B.A. in 1932 and an M.A. in the following year. He undertook research in complex analysis supervised by John McDonald and he was awarded a Ph.D. in December 1934 for his thesis Some results in the theory of Schlicht functions. The Great Depression began in 1929 while Robinson was an undergraduate and by 1932, when he graduated with a B.A., one quarter of the workers in the United States were unemployed. The Depression lasted for around ten years so when Robinson began to look for a post in 1935 there was still a great scarcity of college positions and those which did exist paid very low wages. He was offered a half-time position at Brown University as an instructor which he accepted despite the fact that it really did not pay enough for him to survive. Indeed he suffered great hardship for two years and as a result of the poverty he suffered from tuberculosis. By 1937 employment opportunities were improving and Robinson was offered a full-time instructorship at Berkeley which he gladly accepted. In 1939 Robinson taught a course in number theory and one of his students was Julia Bowman . Raphael and Julia began going for walks together; on these he would teach her more mathematics which she found very exciting. When Bowman's job applications failed, Neyman found a small amount of money to allow her to stay on at Berkeley as his assistant and in 1941 she was awarded her M.A. By this time Raphael and Julia planned to marry so Julia turned down a civil service job to remain at Berkeley as a teaching assistant. Raphael married Julia on 22 December 1941 but after this she was no longer allowed to teach in the mathematics department since Raphael was on the mathematics staff. Many years later Julia Robinson spoke about her husband:
Robinson was steadily promoted, becoming a full professor in 1949. He remained on the Faculty at Berkeley until he retired in 1973. We record details of his character and interests as given in an obituary written by John Addison, David Gale, Leon Henkin, and Constance Reid:
Julia Robinson died in July 1985 and, in the following year, Raphael established the Julia Bowman Robinson Fund for fellowships for graduate students in mathematics at Berkeley. On 4 December 1994 Robinson suffered a stroke from which he never recovered, dying eight weeks later. Robinson worked on a wide variety of mathematical topics. His doctoral dissertation was on complex analysis, but he also worked on logic, set theory, geometry, number theory, and combinatorics. In 1939 he published On numerical bounds in Schottky 's theorem in the Bulletin of the American Mathematical Society, and in the following year published On the mean values of an analytic function in the same journal. As an example of another of his early papers let us say a little about The approximation of irrational numbers by fractions with odd or even terms which he published in the Duke Mathematical Journal in 1940. The paper looks at a problem first studied by Hurwitz in 1891, namely to approximate an irrational number x by rational numbers A/B subject to the condition of | x - A/B | < 1/mB2 for various values of m. Robinson obtains best possible results using methods involving continued fractions, their convergents and their secondary convergents. A typical paper on logic was Finite sequences of classes which appeared in 1945. He made a major contribution to the study of the foundations of mathematics, in particular the study of undecidable theories. In a series of papers Robinson showed that a number of mathematical theories are undecidable. He also examined the concept of 'essentially undecidable' introduced by Tarski , and answered an important open question by constructing a theory with a finite number of axioms that is essentially undecidable. In 1953 Tarski , together with Robinson and Mostowski , published Undecidable theories. G Kreisel writes:
As we mentioned above, Robinson worked in number theory and he used the earliest computers to obtain results. He coded the Lucas test for primality and tested whether 2n - 1 was prime for all primes n < 2304 on the SWAC computer. He gave his results in Mersenne and Fermat numbers published in the Proceedings of the American Mathematical Society in 1954. These showed that these Mersenne numbers were all composite except for the seventeen values: n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, for which 2n - 1 is a prime. At the time that Robinson wrote this paper the last five of these primes were larger than any that had previously been found. A number theory colleague wrote the following about Robinson's number theory papers:
Another major interest was tilings of the plane. In a major paper Undecidability and nonperiodicity for tilings of the plane published in 1971, Robinson continued to study problems of a kind that he had examined for a long while. D A Klarner writes in a review:
In fact Robinson had already made a substantial contribution to problems of this type in earlier papers. We give a description of the type of problems Robinson was considering:
In the 1971 paper mentioned above, Robinson asks a question about undecidability and nonperiodicity results for tilings of the hyperbolic plane. He partially answered his own question in Undecidable tiling problems in the hyperbolic plane which was published in 1978. Undecidability involves the halting problem for Turing machines and in 1991, when Robinson was aged 80, he published Minsky's small universal Turing machine which describes a universal Turing machine with 4 symbols and 7 states. In 1994 Robinson (now aged 83!) published Two figures in the hyperbolic plane which presents some properties of tilings of the hyperbolic plane by equilateral triangles having angles of size 2/n, where n = 7 or n = 9.
Source:School of Mathematics and Statistics University of St Andrews, Scotland |